

LA-UR-19-26743

Approved for public release; distribution is unlimited.

Verification Study of Metal Additive Manufactured Stretch-Dominated Title:

Lattices

Author(s): Bogle, Brandon James Rathbun, Howard J.

Report Intended for:

Issued: 2019-07-16

Verification Study of Metal Additive Manufactured Stretch-Dominated Lattices

Brandon J. Bogle, Howard J. Rathbun April 10, 2019

<u>Outline</u>

Stretch-Dominated & MAM

Beam Member Modeling

Continuum Element Modeling

Beam & Continuum Comparison

3-Point Beam Bending

Beam Member Modeling

Continuum Element Modeling

Beam & Continuum Comparison

3-Point Beam Bending

Areas of Impact

Medical

Aerospace

Safety

Sport, and etc.

(Engadget, 2019)

(TCT Mag, 2017)

(3DMPMAG, 2017)

(TMD, 2018)

UNCLASSIFIED

(ETHZ, 2016)

Cellular Structures

- Ordered structures are lattices while randomly ordered structures are foams.
- Two classes of lattice structures
 - Stretch dominated
 - Bend dominated

Stretch Dominated (X. Zheng et al, 2014)

Bend Dominated UNCLASSIFIED (X. Zheng et al, 2014)

Stretch Dominated Properties

Young's Modulus and yield strength scale linearly with relative density

Principal
Deformation in axial direction (struts)

 Higher yield strength than bend dominated Cellular Structures

(1)

(N. Fleck et al, 2014

Metal Additive Manufacturing

(M. Messner et al, 2015)

- Development has enabled accurate construction of complex 3D structures.
- Control of microgeometries means properties can be designed based on structure.

Beam Member Modeling

Continuum Element Modeling

Beam & Continuum Comparison

3-Point Beam Bending

Beam Element Modeling

- Recreated literature model using beam element in Abaqus
- Octet design conditions:
 - Relative density $(\bar{\rho}) = 10\%$
 - Strut length (l) = 3 mm

$$\bar{\rho} = 6\sqrt{2}\pi (\frac{a}{l})^2$$

Beam Element Characteristics

Material Properties:

Density (tonnes/mm^3)	1.13e-9
Elastic Modulus (MPa)	1780
Poisson Ratio	0.35
Yield Stress (MPa)	40
Plastic Strain	0

- Boundary conditions
 - Displacement in x-direction
 - Symmetry boundary in y- and z-directions

Beam Element ODB Video

Step: Displace Frame: 0 Total Time: 0.000000

Max Displacement = 0.2 mm

Displacement in the +X-direction with no symmetry BC ODB: X_DISP_NoSymBC.odb Abaqus/Standard 3DEXPERIENCE R2018x HotFix 3 Fri Feb 08 16:14:54 MST 2019

Step: Displacement, Displacement in +X-direction Increment 0: Step Time = 0.000 Primary Var. U, U1 Deformed Var: U Deformation Scale Factor: +4.550e+00

Beam Member Modeling

Continuum Element Modeling

Beam & Continuum Comparison

3-Point Beam Bending

Continuum Element Modeling

- Use of representative volume elements for unit cell (UC) would decrease total elements
- Same BC's and material properties except for stiffness
 - Set as orthotropic for linear elastic response

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{13} \\ \sigma_{12} \end{bmatrix} = E\bar{\rho} \begin{bmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{12} & 0 & 0 & 0 \\ \frac{1}{12} & \frac{1}{6} & \frac{1}{12} & 0 & 0 & 0 \\ \frac{1}{12} & \frac{1}{12} & \frac{1}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{12} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{12} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{12} \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ 2\varepsilon_{23} \\ 2\varepsilon_{13} \\ 2\varepsilon_{12} \end{bmatrix}$$

(M. Messner et al, 2015)

Continuum Element ODB Video

Step: Displace Frame: 0 Total Time: 0.000000

Max Displacement = 0.2 mm

0.2 mm Displacement in the positive x-direction for small cube ODB: SmallCube_Point2mm_DISP.odb Abaqus/Standard 3DEXPERIENCE R2018x HotFix 3 Wed Mar 20 14:06:52 MDT 2019

Step: Displacement, Displacement in the +x-direction Increment 0: Step Time = 0.000 Primary Var. U, U1 Deformed Var. U Deformation Scale Factor: +3.000e+00

Beam Member Modeling

Continuum Element Modeling

Beam & Continuum Comparison

3-Point Beam Bending

Comparing Models

- Used reaction force and displacement of reference point for stress-strain curve
- From stiffness matrix, derived analytical solution for stress-strain relationship

$$\sigma_{11} = \frac{E * \bar{\rho} * \epsilon_{11}}{6}$$

Beam Member Modeling

Continuum Element Modeling

Beam & Continuum Comparison

3-Point Beam Bending

3 Point Bending Test

- Compare model to test data
- Beam consists of octet lattice with face plates
 - Length=47 UC (~200 mm), Width= 6 UC (~25 mm), Height=4 UC (~17 mm)
 - 1128 Unit Cells
- Model with representative volume elements

Future Work

- Perform mesh verification study
- Determine bending beam analysis criteria
- Look into other stretch dominated and bend dominated structures
- Compare lattice structures to topology optimization structures.

References

- M. Messner et al. (2015, March 22). Wave propagation in equivalent continuums representing truss lattice materials. International Journal of Solids and Structures. Retrieved March 26, 2019
- N. Fleck et al. (2010, June 30). Micro-architecture materials: past, present and future, *The Royal Society*. Retriedved March 26, 2019
- X. Zheng et al. (2014, June 20). Ultralight, Ultrastiff Mechanical Metamaterials, Science Magainze. Retrieved March 26, 2019
- Photo of helmet, in "This 3D printed football helmet liner promises better protection," *Engadget*, March 26, 2019, Available https://www.engadget.com/2019/02/01/riddell-carbon-3d-printed-football-helmet/
- Photo of impeller, in "Chloe Kow, Star Rapid: Metal 3D Printing is an incredibly sought-after process," TCT Magazine, March 26, 2019, Available https://www.tctmagazine.com/3d-printing-news/chloe-kow-star-rapid-metal-3d-printing/
- Photo of bicycle, in "AM Yields New Breeds of Bikes," 3D Metal Printing, March 26, 2019, Available https://www.3dmpmag.com/magazine/article/?/2017/2/10/AM Yields New Breeds of Bikes
- Photo of implant, in "Additive manufacturing orthopedic implants," *Today's Medical Developments*, March 26, 2019, Available https://www.todaysmedicaldevelopments.com/article/renishaw-additive-manufacturing-orthopedicimplants/
- Photo of rocket, in "Lattice structure absorbs vibrations," ETH Zurich, March 26, 2019, Available https://www.ethz.ch/en/news-and-events/eth-news/news/2016/07/lattice-structure-absorbs-vibrations.html

Questions?

